Monthly Archives: May 2020

Not which ones, but how many?

Perspective on research from Guoer Liu, doctoral student in Political Science, and recipient of the 2019 Roy Pierce Award 

Guoer Liu

“Not which ones, but how many” is a phrase used in list experiments instruction, where researchers instruct participants, “After I read all four (five) statements, just tell me how many of them upset you. I don’t want to know which ones, just how many.” In retrospect, I was surprised to see that this phrase encapsulates not only the key research idea, but also my fieldwork adventure: not which plans could go awry, but how many. The fieldwork experience could be frustrating at times, but it has led me to uncharted terrain and brought insights into the research contexts. The valuable exposure would not have been possible without support from the Roy Pierce Award and guidance from Professor Yuki Shiraito

Research that I conducted with Yuki Shiraito explores the effect of behavior on political attitudes in authoritarian contexts to answer the question: does voting for autocracy reinforce individual regime support? To answer this question, two conditions need to be true. First, people need to honestly report their level of support before- and after- voting in authoritarian elections. Second, voting behavior needs to be random. Neither situation is probable in illiberal autocracies. Our project addresses these methodological challenges by conducting a field experiment that combines a list experiment and a randomized encouragement design in China.

In this study, list experiments are used instead of direct questions to measure the respondents’ attitudes towards the regime in the pre- and post-election surveys. The list experiment is a survey technique to mitigate preference falsification by respondents. Although the true preference of individual respondents will be hidden, the technique allows us to identify the average level of support for the regime within a group of respondents. In addition, we employ a randomized encouragement design where get-out-the-vote messages are randomly assigned, which help us estimate the average causal effect of a treatment. For effect moderated by prior support for the regime, we estimate the probability of the prior support using individual characteristics and then estimate the effect for the prior supporters via a latent variable model.

While the theoretical part of the project went smoothly and the simulation results were promising, the complication of fieldwork exceeded my expectation. For the list experiment survey, the usually reticent respondents started asking questions about the list questions immediately after the questionnaires were distributed. Their queries took the form of “I am upset by option 1, 2, and 4, so what number should I write down here?” This was not supposed to happen. List experiments are developed to conceal individual respondents’ answers from researchers. By replacing the questions of “which ones” with the question of “how many,” respondents’ true preference is not directly observable, which makes it easier for them to answer sensitive questions honestly. Respondents’ eagerness to tell me their options directly defeats the purpose of this design. Later I learned from other researchers that the problem I encountered was common in list experiment implementation regardless of research contexts and types of respondents. 

The rationale behind respondents’ desire to share their individual options despite being given a chance to hide them is thought-provoking. Is it because of the cognitive burden of answering a list question, which is not a familiar type of questions to respondents? Or is it because the sensitive items, despite careful construction, raise the alarm? Respondents are eager to specify their stance on each option and identify themselves as regime supporters: they do not leave any room for misinterpretation. To ease the potential cognitive burden, we will try a new way to implement the list experiment in a similar project on preference falsification in Japan. We are looking forward to seeing if it improves respondents’ comprehension of the list question setup. The second explanation is more concerning, however. It suggests the scope condition of list experiments as a valid tool to elicit truthful answers from respondents. Other more implicit tools, such as endorsement experiments, may be appropriate in those contexts to gauge respondent’s preference. 

Besides the intricacies of the list experiment, carrying out encouragement design on the ground is challenging. We had to modify the behavioral intervention to adapt needs from our local collaborators, and the realized sample size was only a fraction of the negotiated size initially. Despite the compromises, the implementation is imbued with uncertainty: meetings were postponed or rescheduled last minutes, instructions from local partners are sometimes inconsistent and conflictual. The frustration was certainly real. But the pain makes me cognizant of judgment calls researchers have to make in the backstage. The amount of effort required to produce reliable data is admirable. And as a consumer of data, I should always interpret data with great caution.

While the pilot study does not lead to a significant finding directly, the research experience and the methods we developed have informed the design of a larger project that we are currently doing in Japan.

I always thought of doing research as establishing a series of logical steps between a question and an answer. Before I departed for the pilot study, I made a detailed timeline for the project with color-coded tasks, flourish-shaped arrows pointing at milestones of the upcoming fieldwork. When I presented this plan to Professor Shiraito, he smiled and told me that “when doing research, it is generally helpful to think of the world in two ways: the ideal world and the real world. You should be prepared for both.” Wise words. Because of this, I am grateful for the Roy Pierce Award for offering the opportunity to catch a glimpse of the real world. And I am indebted to Professor Shiraito for helping me see the potential of attaining the ideal world with intelligence and appropriate tools.